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Subspace Identification of Distributed Clusters of
Homogeneous Systems

Chengpu Yu, Michel Verhaegen

Abstract—This note studies the identification of a network
comprised of interconnected clusters of LTI systems. Each cluster
consists of homogeneous dynamical systems, and its interconnec-
tions with the rest of the network are unmeasurable. A subspace
identification method is proposed for identifying a single cluster
using only local input and output data. With the topology of
the concerned cluster being available, all the LTI systems within
the cluster are decoupled by taking a transformation on the
state, input and output data. To deal with the unmeasurable
interconnections between the concerned cluster and the rest
of the network, the Markov parameters of the decoupled LTI
systems are identified first by solving a nuclear-norm regularized
convex optimization, following the state-space realization of a
single LTI system within the cluster by solving another nuclear-
norm regularized optimization problem. The effectiveness of the
proposed identification method is demonstrated by a simulation
example.

Index Terms—General network topology, decomposable sys-
tems, nuclear norm optimization.

I. INTRODUCTION

The emergence of networked systems has stimulated a surge
in research on distributed control and estimation problems.
Despite many contributions on the control and estimation part,
the identification of networked systems is far less developed.
This note studies the distributed identification of large-scale
interconnected system networks which can be carried out
using either parametric identification methods or subspace
identification methods.

To date, there have been several parametric approaches
for the distributed identification of networked systems. The
instrumental variable technique was used in [1] to identify
distributed systems with identical subsystems. It requires all
system inputs and outputs to form the instrumental variables,
making this approach not scalable. In [2], using local system
observations, the classic prediction-error method for closed-
loop identification was employed to estimate a particular
module in the network with some specific interconnection
structure. In this method, the interconnection signals between
the systems in a network were assumed to be measurable. This
condition is easily violated when dealing with network approx-
imations of systems governed by PDEs. The identification of a
1D heterogenous networked system, where the interconnection
variables between the local systems are unmeasurable, was
discussed in [3]. This approach exploits the parametrization
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of the SSS (Sequentially Semi-Separable) system matrices to
derive an iterative extended Kalman filtering solution, whereby
each iteration has linear computational complexity; however,
the overall procedure is non-convex. A recent contribution to
address the identification problem with missing interconnec-
tion measurements of the networked systems was considered
in [4]. Though an efficient ADMM solution was presented,
this approach is also non-convex in nature.

For a state-space represented network approximation of a
continuous-time physical phenomenon (e.g., heat, wave or
wind) or a continuous deformable membrane governed by
PDEs [5], [6], the associated inner states are usually unmea-
surable, which imposes a great challenge on the local system
identification problem. To compensate for the missing infor-
mation, the unknown interconnection signals were approxi-
mated by linear combinations of the local inputs and outputs
[7]. The search for the related neighbors makes the problem
non-convex. As an alternative, a nuclear-norm optimization
approach was developed in [8] by exploiting the fact that the
transfer function of the local dynamic is of low-order while
that of the global local dynamic is of high-order; however, this
approach is unable to identify the interconnections between
neighboring systems.

In this note, we focus on the identification of a network
consisting of distributed clusters of homogeneous dynamical
systems. The concerned networked system belongs to the so-
called α-heterogeneous system [9] or decomposable system
[10]. It is remarked that the finite network approximation
of a deformable membrane in adaptive-optics applications is
an example of the network consisting of distributed clusters,
for which the dynamics of boundary systems are different
from those of the inner systems. Although several state-space
model identification algorithms have been investigated for
decomposable systems in [11], [12], the realization of the
system matrices requires the solution of a Blinear Matrix
Inequality (BMI) problem. As a consequence, the convex
nature of the subspace identification is destroyed.

The goal of this note is to derive a convex optimization
approach for the subspace identification problem of distributed
clusters of homogeneous systems, with each cluster being
interconnected by an arbitrary but known bidirected topology.
Here we build upon our recent work in [13] where the problem
of identifying the local system dynamics in a 1D distributed
network was considered. Different from the local identification
methods in [7], [8], the unknown interconnection signals to the
concerned cluster are not approximated by linear combinations
of local (active) inputs and outputs. Instead, by exploiting
the spatial and temporal low-rank properties of the unknown
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Fig. 1. Diagram of a network comprised of distributed clusters. The set
of interconnected systems in an ellipse is called ”local cluster”, while the
”network” refers to the union of all the distributed local clusters.

inputs that are revealed in the data equation of a state-space
model, a nuclear-norm regularized optimization approach is
developed. Numerical simulations show that the proposed
approach can effectively handle the adverse effects caused by
unmeasurable interconnection signals.

The rest of the note is organized as follows. Section II
formulates the distributed identification problem. Section III
presents an identification framework for distributed clusters
homogeneous systems. In Section IV, a simulation example is
provided to demonstrate the performance of the proposed i-
dentification algorithm, followed by the conclusions in Section
V.

The following notations are adopted throughout the note.
The lowercase (uppercase) x (X) is used to denote a vector
(matrix). X(m : n, p : q) is the submatrix of X with rows
indexed from m to n and columns indexed from p to q,
this notation is in accordance with Matlab style. diag(x)
denotes a diagonal matrix with its diagonal entries equal to
the components of x. The superscripts T and −1 are transpose
and inverse operators, respectively. I is an identity matrix of
appropriate dimension. ⊗ stands for the Kronecker product.
∥X∥F and ∥X∥∗ denote the Frobenius norm and the nuclear
norm of the matrix X , respectively. R and B stand for the real
and binary number sets, respectively.

II. PROBLEM FORMULATION

We consider the identification of a local cluster of homo-
geneous systems. As shown in Fig. 1, a local cluster refers to
the set of systems in an ellipse. Suppose that the considered
local cluster consists of N systems which are connected
in a topology with its adjacency matrix being denoted by
P ∈ BN×N , and there are M systems in other clusters of the
network that connect with the considered local cluster with the
corresponding interconnection matrix denoted by R ∈ BN×M .

The dynamics of the local cluster is described by the
following state-space form:

x(k + 1) = (I ⊗Aa + P ⊗Ab)x(k) + (R⊗Ab) v(k)

+ (I ⊗B)u(k)

y(k) = (I ⊗ Ca + P ⊗ Cb)x(k) + (R⊗ Cb) o(k) + w(k),
(1)

where x(k) =
[
xT
1 (k) · · · xT

N (k)
]T

, u(k) =[
uT
1 (k) · · · uT

N (k)
]T

, y(k) =
[
yT1 (k) · · · yTN (k)

]T

and w(k) =
[
xT
1 (k) · · · xT

N (k)
]T are respectively the

local-cluster state, input, output and measurement noise;
xi(k) ∈ Rn, ui(k) ∈ Rm, yi(k) ∈ Rp and wi(k) ∈ Rp,
for i = 1, · · · , N , are respectively the state, input, output
and measurement noise of the i-th system operating within
the local cluster; Aa, Ab ∈ Rn×n, Ca, Cb ∈ Rp×n and
B ∈ Rn×m are system matrices of a single system
within the local cluster; v(k) =

[
vT1 (k) · · · vTM (k)

]T and
o(k) =

[
oT1 (k) · · · oTM (k)

]T
are the stacked state and output

that come from the neighboring clusters of the network;
vi(k) ∈ Rn and oi(k) ∈ Rp, for i = 1, · · · ,M , are state and
output of the i-th system from the neighboring clusters that
connects to the concerned local cluster.

As shown in the state-space model (1), the unknown states
and outputs of the neighboring clusters influence the dynamics
of the concerned local cluster, causing the corresponding
identification problem to be challenging. In many practical
systems such as deformable mirror of adaptive optics, the
controlled inputs of individual systems act locally; therefore,
system inputs in the considered model in (1) are assumed to be
decoupled. In addition, the matrices Ca and Cb are considered
to be fat matrices; otherwise, the system states might be
directly observed from their outputs, and the corresponding
local system identification may become trivial.

For the state-space model of a local cluster in (1), the
following assumptions are made.

A1. The local-cluster model in (1) is minimal and stable.
A2. The input of the local cluster, u(k), is persistently excit-

ing of any finite order [14], [15].
A3. The measurement noise of the local cluster, w(k), is a

white noise sequence and is uncorrelated with the input
u(k).

A4. The topology of the local cluster is bidirectional, i.e., the
associated adjacency matrix P is symmetric.

Assumptions A1-A3 are standard assumptions for system
identification problems. In Assumption A4, the considered
network topology is assumed to be bidirectional, which is
common in the network approximations of PDE systems
[5], [6]. The bidirectional-topology assumption makes the
concerned identification problem more complicated than those
with directed topologies in [16], [17]; however, it implies that
the adjacency matrix P is diagonalizable, which will be used
for the subspace identification method in this note.

The problem of interest is stated as follows. Given the input-
output data {u(k), y(k)}Tk=1 and the eigenvalue decomposition
P = UΛUT with Λ being a real diagonal matrix Λ =
Diag (λ1, · · · , λN ), the goal is to estimate the Markov parame-
ters (Ca+λiCb)(Aa+λiAb)

jB for i = 1, · · · , N, j = 0, 1, · · ·
and subsequently use these estimated Markov parameters to
estimate the individual system matrices Aa, Ab, B, Ca, Cb

up to a similarity transformation, i.e. the estimated system
matrices satisfies that Âa = QAaQ

−1, Âb = QAbQ
−1, B̂ =

QB, Ĉa = CaQ
−1, Ĉb = CbQ

−1 with Q ∈ Rn×n being a
nonsingular ambiguity matrix.

It is remarked that, compared with the 1D distributed-system
identification problem in [3], [13], the system matrices in (1)
may not be sparse and banded. In this note, an approximate
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solution that uses finite length data sequence is considered.
This is a direct consequence of the use of the nuclear-norm
optimization. The analysis of the consistency of the estimated
models is out of scope in this note, though the numerical
simulation section highlights that accurate estimates can be
obtained.

III. SUBSPACE IDENTIFICATION OF LOCAL CLUSTERS OF
HOMOGENEOUS SYSTEMS

A. Identification of Markov parameters

Under Assumption A4, the adjacency matrix P is sym-
metric, so it is always diagonalizable with its eigenvectors
being mutually orthogonal and its eigenvalues being real [18].
Then, according to the properties of decomposable systems in
[12], the system matrices in (1) can be transformed into block
diagonal matrices by a transformation of the state, input and
output data as summarized in the following lemma.

Lemma 1. [12] Let P = UΛUT with U an orthogonal matrix
and Λ a real diagonal matrix. The local cluster in (1) can be
equivalently transformed into:

x̂(k + 1) = (I ⊗Aa + Λ⊗Ab)︸ ︷︷ ︸
A

x̂(k) +
(
UTR⊗Ab

)
︸ ︷︷ ︸

R

v(k)

+ (I ⊗B)︸ ︷︷ ︸
B

û(k),

ŷ(k) = (I ⊗ Ca + Λ⊗ Cb)︸ ︷︷ ︸
C

x̂(k) +
(
UTR⊗ Cb

)
o(k) + ŵ(k)︸ ︷︷ ︸

ê(k)

.

(2)

where x̂(k) = (UT ⊗ I)x(k), û(k) = (UT ⊗ I)u(k), ŷ(k) =
(UT ⊗ I)y(k) and ŵ(k) = (UT ⊗ I)w(k). The following
system matrices are block diagonal: A = I ⊗ Aa + Λ ⊗ Ab,
B = I ⊗ B, C = I ⊗ Ca + Λ ⊗ Cb; however, the matrix
R may be fully filled. The unknown outputs from neighboring
clusters are absorbed into the measurement noise, which yields
a combined noise denoted by ê(k).

It is noted that the state-space model with block-diagonal
system matrices in (2) enables us to explicitly present its data
equation with finer structures.

Given T pairs of input and output data, the data equation
of the state-space model in (2) can be written as

Ŷs,r = OsX̂r +Tu,sÛs,r +Tv,sV̂s,r + Ês,r, (3)

where

Ŷs,r =


ŷ(1) ŷ(2) · · · ŷ(r)

ŷ(2) ŷ(3) . .
.

ŷ(r + 1)
... . .

.
. .
. ...

ŷ(s) ŷ(s+ 1) · · · ŷ(T ).

 ∈ RsNn×sNn

with the subscripts s and r representing respectively the
numbers of vertical and horizontal blocks, satisfying that
s + r = T + 1; Ûs,r, Ûs,r and Ŵs,r are defined similarly

as Ŷs,r; X̂r =
[
x̂(1) · · · x̂(r)

]
;

Os =


C
CA
...

CAs−1

 ∈ RsNn×Nn

is the extended observability matrix;

Tu,s =


0

CB 0
...

. . .
. . .

CAs−2B · · · CB 0

 ∈ RsNp×sNm,

and

Tv,s =


0

CR 0
...

. . .
. . .

CAs−2R · · · CR 0

 ∈ RsNp×sMn.

The term OsX̂r + Tv,sV̂s,r on the right-hand side of the
data equation in (3) is unknown. However, it has a low rank
under some conditions.

Lemma 2. The sum OsX̂r + Tv,sV̂s,r in the data equation
(3) has a rank satisfying

rank
(
OsX̂r +Tv,sV̂s,r

)
≤ Nn+ (s− 1)Mn. (4)

Proof: The above results can be straightforwardly ob-
tained by considering the following rank properties:

rank
(
OsX̂r +Tv,sV̂s,r

)
≤ rank

(
OsX̂r

)
+ rank

(
Tv,sV̂s,r

)
,

rank
(
OsX̂r

)
≤ rank (Os) ≤ Nn,

rank
(
Tv,sV̂s,r

)
≤ rank (Tv,s) ≤ (s− 1)Mn.

From the above lemma, we can see that the sum OsX̂r +
Tv,sV̂s,r is of low rank when the dimension parameters s and
M satisfy

sNp > Nn+ (s− 1)Mn. (5)

It is obvious that, when N > M , we can always find a
positive integer s such that the above inequality holds. On
the other hand, for a fixed dimension parameter s, when N is
much larger than M , the associated low rank property will
be more significant. In many practical networked systems,
it is usually possible to find a local cluster for which the
number of systems inside the cluster is larger than the number
of interconnected systems outside the cluster. Examples are
1D networked systems with each system connecting with its
two-neighboring systems and 2D networked systems with each
system connecting with its four-neighboring systems.

Inspired by the idea of the N2SID method [19] and its
extension in [13], by taking into account the low rank property
of the sum OsX̂r+Tv,sV̂s,r, the Markov parameters inside the
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block Toeplitz matrix Tu,s can be estimated by the nuclear-
norm optimization as follows:

min
Ỹs,r∈Hs,r,Tu,s∈Ts

T∑
k=1

∥ŷ(k)− ỹ(k)∥2F +α∥Ỹs,r −Tu,sÛs,r∥∗,

(6)
where α is a regularization parameter to balance the least-
squares term and the nuclear-norm regularization term; Hs,r

denotes the set of block Hankel matrices having the form
of Ŷs,r and Ts represents the set of block Toeplitz matrices
having the same structure as Tu,s; Ỹs,r is a block Hankel
matrix constructed by {ỹ(k)}Tk=1, which are variables used
to represent noise-free measurements. The least-squares term
is used to tackle the measurement-noise effect, while the
nuclear-norm regularization term is adopted to deal with the
unmeasurable states from neighboring clusters in the network.

It is noteworthy that the Markov parameters, as block entries
of Tu,s, are further block diagonal matrices. More specifically,
CAiB can be explicitly expressed as

CAiB =BDiag
[
(Ca + λ1Cb)(Aa + λ1Ab)

iB, · · · ,
(Ca + λNCb)(Aa + λNAb)

iB
]
,

(7)

where BDiag[·] denotes a block-diagonal matrix.
Instead of directly estimating the coarse Markov parameters

{CAiB}s−2
i=0 in (6), we regard the finer Markov parameters

{(Ca + λjCb)(Aa + λjAb)
iB}s−2,N

i=0,j=1 as the variables to be
determined. Since such a finer parametrization of Ts,r does
not destroy the convexity of (6), the finer Markov parameters
{(Ca+λjCb)(Aa+λjAb)

iB}s−2,N
i=0,j=1 can be reliably estimat-

ed. In addition, by considering the finer Markov parameters to
be variables, the total number of variables involved the opti-
mization problem in (6) can be reduced. The parametrization
of Ỹs,r requires TNp variables, and the parametrization of
Tu,s requires (s − 1)Npm variables. It is obvious that the
number of decision variables in (6) can be very large once any
or a combination of the dimension parameters s, T or N has
a large value. To cope with this high-dimension optimization
problem, the ADMM algorithm in [20] will be adopted for
numerical simulations.

B. Estimation of system matrices

After having obtained the Markov parameters {(Ca +
λjCb)(Aa+λjAb)

iB}s−2,N
i=0,j=1, this subsection will be devoted

to the estimation of system matrices {Ca, Cb, Aa, Ab, B}.
Since the pattern matrix P is accessible beforehand, the values
of {λi}Ni=1 are available.

For notational simplicity without sacrificing the essence of
the method, we shall present the estimation of system matrices
using the Markov parameters up to the sixth moment, i.e.
{(Ca + λjCb)(Aa + λjAb)

iB}6,Ni=0,j=1.
Denote Cj = Ca+λjCb and Aj = Aa+λjAb. Based on the

known Markov parameters {CjA
i
jB}6i=1 for j ∈ {1, · · · , N},

we define the following block Hankel matrix:

Hj =


CjB CjAjB CjA

2
jB CjA

3
jB

CjAjB CjA
2
jB CjA

3
jB CjA

4
jB

CjA
2
jB CjA

3
jB CjA

4
jB CjA

5
jB

CjA
3
jB CjA

4
jB CjA

5
jB CjA

6
jB



=


Cj

CjAj

CjA
2
j

CjA
3
j

 [
B AjB A2

jB A3
jB

]
.

(8)

In developing the estimation method for the system matri-
ces, use will be made of the following assumption.

A5. The extended observability matrix


Cj

CjAj

CjA
2
j

CjA
3
j


and the extended controllability matrix[
B AjB A2

jB A3
jB

]
, for j = 1, 2, · · · , N ,

are of full column and row ranks, respectively

Under Assumption A5 and when n < min{4p, 4m}, it is
easy to see that rank (Hj) = n, and the extended controlla-
bility matrix

[
B AjB A2

jB A3
jB

]
has the same row

subspace as Hi.
Taking the SVD decomposition of Hi yields that

Hj =
[
U j
s U j

n

] [ Σj

O

] [
V j,T
s

V j,T
n

]
, (9)

where Σj ∈ Rn×n is a nonsingular diagonal matrix, U j
s ∈

R4p×n, U j
n ∈ R4p×(4p−n), V j

s ∈ R4m×n and V j
n ∈

R4m×(4m−n) are partial orthogonal matrices. Since Hj is
known, the matrices on the right-hand side of (9) are con-
sidered to be known as well in the sequel.

By equations (8) and (9), we can derive that[
B AjB A2

jB A3
jB

]
V j
n = 0, j = 1, · · · , N. (10)

Inspired by the subspace-based blind identification method
in [21], we shall parameterize the row space of Hj for j =
1, · · · , N . Define a parametric matrix Φ ∈ Rn×15m as

Φ =
[
B AaB AbB A2

aB AaAbB

AbAaB A2
bB A3

aB A2
aAbB AaAbAaB

AaA
2
bB AbA

2
aB AbAaAbB A2

bAaB A3
bB].

For each j ∈ {1, · · · , N}, there exists a constant matrix
Θj ∈ R15m×4m satisfying[

B AjB A2
jB A3

jB
]
= ΦΘj . (11)

By the relation between Φ and
[
B AjB A2

jB A3
jB

]
,

the constant matrix Θj can be easily determined; hence Θj is
considered to be known in the sequel.

Substituting (11) into (10) yields that

ΦΘjV
j
n = 0 for j = 1, · · · , N.
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Then, by stacking the above equations for all j ∈ {1, · · · , N},
we can obtain that

Φ
[
Θ1 Θ2 · · · ΘN

]︸ ︷︷ ︸
Θ


V 1
n

V 2
n

. . .

V N
n


︸ ︷︷ ︸

Vn

= 0.

(12)
In the above equation, the matrices Θ and Vn are known,
while Φ is the parametric matrix to be estimated.

Next, we shall analyze the properties of the solution to
equation (12). Although the matrix Θ may be a fat matrix,
it is generally rank deficient.

Lemma 3. For the coefficient matrix Θ ∈ R15m×4Nm in (12),
it has a rank satisfying

rank (Θ) ≤ 10m, (13)

where the equality holds if the adjacency matrix P has more
than 4 different eigenvalues.

Proof: By re-ordering the block columns of Θ that is
determined by equation (11), we can obtain the following
matrix

I · · · I
I · · · I

λ1I · · · λNI
I · · · I

λ1I · · · λNI
λ1I · · · λNI
λ2
1I · · · λ2

NI
· · ·


,

(14)
where the identity matrix I has size m × m. From the
structure of the above matrix, it is easy to see that rank (Θ) ≤
(1 + 2 + 3 + 4)m = 10m. According to the properties of the
Vandermonde matrix [18], we can find that rank (Θ) = 10m as
long as there are at least 4 different elements in {λ1, · · · , λN},
namely the adjacency matrix P has more than 4 different
eigenvalues.

The above lemma indicates that the matrix Θ is always rank
deficient, regardless of the topology of the local cluster.

By Lemma 3, the matrix ΘVn ∈ R15m×(4m−n)N in
equation (12) has the rank property satisfying

rank (ΘVn) ≤ rank (Θ) ≤ 10m.

Therefore, when n + 10m < 15m, the parametric matrix Φ
cannot be determined from equation (12) up to an n×n non-
singular ambiguity matrix. However, by taking an insight into
the structure of Φ, we can construct a matrix Γ(Φ) ∈ R3n×7m

from the block entries of Φ such that it is of low rank:

Γ(Φ) =

 B AaB AbB · · · A2
bB

AaB A2
aB AaAbB · · · AaA

2
bB

AbB AbAaB A2
bB · · · A3

bB


=

 I
Aa

Ab

 [
B AaB AbB · · · A2

bB
]
.

(15)

Then, by combining the equation in (12) and the low rank
property of Γ(Φ), we propose a nuclear-norm regularized
optimization formulation as follows:

min
Φ

∥ΦΘVn∥2F + β∥Γ(Φ)∥∗

s.t. ΦMl = Mr

(16)

where β is a regularization parameter to make a tradeoff
between the least-squares term and the nuclear-norm term,
Ml ∈ R15m×n and Mr ∈ Rn×n are constant and known
matrices, and the equality constraint is provided to avoid
the trivial solution of Φ. In principle, Ml has to be chosen
such that it has full column rank and each of its columns
is non-orthogonal to the row space of Φ, while Mr can be
chosen as any non-singular matrix. In numerical simulations,
the matrices Ml and Mr are randomly generated so that they
satisfy the above mentioned properties with probability one
[22].

Based on the estimate of Φ obtained from (16), we shall es-
timate the matrices Aa, Ab and B. Let the SVD decomposition
of Γ(Φ) be given as follows:

Γ(Φ) =
[
Us Un

] [ Σs

Σn

] [
V T
s

V T
n

]
, (17)

where Us ∈ R3n×n, Un ∈ R3n×2n, Vs ∈ R7m×n and Vn ∈
R7m×(7m−n) are partial orthogonal matrices, Σs ∈ Rn×n and
Σn are diagonal matrices with the nonzero entries of Σs being
larger than those of Σn. Then, the estimates of Aa, Ab, B are
respectively set to

Âa = Us(n+ 1 : 2n, :), Âb = Us(2n+ 1 : 3n, :),

B̂ = V T
s (:, 1 : m).

(18)

Denote M i
j = (Ca+λjCb)(Aa+λjAb)

iB for j = 1, · · · , N
and i = 0, · · · , 6. The matrices Ca and Cb can be estimated
by solving the following least-squares minimization problem:

min
Ca,Cb

6,N∑
i=0,j=1

∥∥∥∥M i
j −

[
Ca Cb

] [ (Aa + λjAb)
iB

λj(Aa + λjAb)
iB

]∥∥∥∥2

F

.

(19)

C. Summary of the identification approach

The subspace identification of a local cluster of homo-
geneous systems is carried out by sequentially estimating
the Markov parameters and the system matrices. To ease
the reference, the identification approach is summarized in
Algorithm 1.

Algorithm 1: Identification of local clusters of homogeneous systems
1) Transform the local-cluster model into (2), as shown in Lemma 1;
2) Estimate parameters {Ca + λjCb)(Aa + λjAb)

iB}s−2,N
i=0,j=1 by

solving the nuclear-norm optimization problem in (6);
3) Estimate the parametric matrix Φ by solving (16);
4) Take the SVD decomposition of Γ(Φ) shown in (17),

and extract the estimates of Aa, Ab and B, as shown in (18).
5) Estimate Ca and Cb by solving (19).
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Fig. 2. The networked system considered in a simulation example.

IV. NUMERICAL SIMULATIONS

In this section, a numerical simulation example is provided
to demonstrate the effectiveness of the proposed identification
method. In the simulation, the system inputs and measurement
noises are generated randomly, and 2000 pairs of input-output
data are adopted for system identification. The regularization
parameters in (6) and (16) are empirically set to α = 0.1, β =
0.01. The high-dimension optimization problem in (6) is
solved using the ADMM algorithm [20], while the small-scale
convex optimization problem in (16) is solved using the CVX
toolbox [23].

To assess the performance of Algorithm 1, the normalized
impulse-response-fitting criterion is defined. For the matrix
triplet {Ca, Aa, B}, the associated impulse-response-fitting
criterion is defined as

1

K

K∑
j=1

∑10
i=0 ∥CaA

i
aB − Ĉj

a

(
Âj

a

)i

B̂j∥F∑10
i=0 ∥CaAi

aB∥F
, (20)

where K is the number of Monte-Carlo trials which is set
to K = 50 and {Ĉj

a, Â
j
a, B̂

j} are the j-th estimates of
{Ca, Aa, B}, respectively. The normalized impulse-response-
fitting criteria for the matrix triplets {Cb, Aa, B}, {Ca, Ab, B}
and {Cb, Ab, B} are defined similarly.

In this simulation, we consider the identification of a local
cluster of the network as shown in Fig. 2. The corresponding
system matrices are defined as:

Aa =

[
0.3695 −0.2017
−0.1817 0.3209

]
, Ab =

[
0.1699 −0.1078
0.2842 0.1815

]
,

Ca =
[
0.6002 0.0163

]
, Cb =

[
0.9817 −0.3902

]
,

B =

[
−0.5630
−0.9674

]
.

Fig. 3 shows the identification performance of the proposed
identification algorithm under different noise levels. It can be
observed that the associated estimation errors of impulse re-
sponses decrease along with the increase of the signal-to-noise
ratio (SNR) when SNR≤40 dB; however, they change slightly
when SNR≥50 dB, indicating that the estimates of system
matrices are slightly biased. This might be caused by two
factors: (a) the provided nuclear-norm optimization problem
is a relaxed version of the low-rank optimization problem;
(b) the unknown system outputs from neighboring clusters are
considered to be measurement noises. Furthermore, it can be
found in Fig. 3 that, if the unknown interconnection signals
are neglected, i.e. the nuclear norm in (6) is replaced by the
Frobenius norm, the associated estimates of system matrices
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Fig. 3. Identification performance of Algorithm 1. Solid curves are plotted
by neglecting the unknown interconnection signals (using the Frobenius-norm
regularization), while dashed curves are plotted by our proposed algorithm
(using the nuclear-norm regularization).

are very biased, which cannot be mitigated by increasing the
SNR. From the above simulation results, we can see that our
proposed identification is effective in handling the unknown
interconnection signals.

V. CONCLUSION

In this note, we have developed a subspace identification
algorithm for distributed clusters of homogeneous systems.
The merit of the presented identification algorithm is that
it is carried out by solving convex optimization problems;
thus, it can yield more reliable identification results with
relation to the general nonlinear optimization solutions. To
implement the proposed algorithm, we identify the associated
Markov parameters by solving a nuclear-norm regularized
optimization problem, followed by the estimation of individual
system matrices by solving another nuclear-norm regularized
optimization problem. Numerical simulations have been pro-
vided to show the effectiveness of the proposed identification
algorithm. In the future, by making use of the merit of
low-rank optimization, the local identification of distributed
heterogeneous systems will be investigated.
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